3.163 \(\int \frac{\sec (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=60 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a \sin (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{1}{d \sqrt{a \sin (c+d x)+a}} \]

[Out]

ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])]/(Sqrt[2]*Sqrt[a]*d) - 1/(d*Sqrt[a + a*Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0621285, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2667, 51, 63, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{a \sin (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{1}{d \sqrt{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

ArcTanh[Sqrt[a + a*Sin[c + d*x]]/(Sqrt[2]*Sqrt[a])]/(Sqrt[2]*Sqrt[a]*d) - 1/(d*Sqrt[a + a*Sin[c + d*x]])

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx &=\frac{a \operatorname{Subst}\left (\int \frac{1}{(a-x) (a+x)^{3/2}} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=-\frac{1}{d \sqrt{a+a \sin (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(a-x) \sqrt{a+x}} \, dx,x,a \sin (c+d x)\right )}{2 d}\\ &=-\frac{1}{d \sqrt{a+a \sin (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+a \sin (c+d x)}\right )}{d}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{a+a \sin (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{1}{d \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.0489939, size = 39, normalized size = 0.65 \[ -\frac{\, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{1}{2} (\sin (c+d x)+1)\right )}{d \sqrt{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-(Hypergeometric2F1[-1/2, 1, 1/2, (1 + Sin[c + d*x])/2]/(d*Sqrt[a + a*Sin[c + d*x]]))

________________________________________________________________________________________

Maple [A]  time = 0.102, size = 54, normalized size = 0.9 \begin{align*} -2\,{\frac{a}{d} \left ( 1/2\,{\frac{1}{a\sqrt{a+a\sin \left ( dx+c \right ) }}}-1/4\,{\frac{\sqrt{2}}{{a}^{3/2}}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{a+a\sin \left ( dx+c \right ) }\sqrt{2}}{\sqrt{a}}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+a*sin(d*x+c))^(1/2),x)

[Out]

-2*a*(1/2/a/(a+a*sin(d*x+c))^(1/2)-1/4/a^(3/2)*2^(1/2)*arctanh(1/2*(a+a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2)))/d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.16618, size = 252, normalized size = 4.2 \begin{align*} \frac{\frac{\sqrt{2}{\left (a \sin \left (d x + c\right ) + a\right )} \log \left (-\frac{\frac{2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a}}{\sqrt{a}} + \sin \left (d x + c\right ) + 3}{\sin \left (d x + c\right ) - 1}\right )}{\sqrt{a}} - 4 \, \sqrt{a \sin \left (d x + c\right ) + a}}{4 \,{\left (a d \sin \left (d x + c\right ) + a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(a*sin(d*x + c) + a)*log(-(2*sqrt(2)*sqrt(a*sin(d*x + c) + a)/sqrt(a) + sin(d*x + c) + 3)/(sin(d*
x + c) - 1))/sqrt(a) - 4*sqrt(a*sin(d*x + c) + a))/(a*d*sin(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\sqrt{a \left (\sin{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)/sqrt(a*(sin(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 1.13295, size = 80, normalized size = 1.33 \begin{align*} -\frac{a{\left (\frac{\sqrt{2} \arctan \left (\frac{\sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} a} + \frac{2}{\sqrt{a \sin \left (d x + c\right ) + a} a}\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/2*a*(sqrt(2)*arctan(1/2*sqrt(2)*sqrt(a*sin(d*x + c) + a)/sqrt(-a))/(sqrt(-a)*a) + 2/(sqrt(a*sin(d*x + c) +
a)*a))/d